沿规定的任务空间路径的冗余机器人的轨迹的离线最佳规划通常分为两个连续的过程:首先,任务空间路径倒置以获得一个联合空间路径,然后,后者通过时间定律进行参数化。如果两个过程分开,它们将无法优化相同的目标函数,最终提供了次优的结果。在本文中,提出了一种统一的方法,而动态编程是基础优化技术。它的灵活性允许安装任意约束和客观功能,从而为真实系统的最佳计划提供了一个通用框架。为了证明其适用于现实世界情景,该框架是实例化的,以进行时间优势。与数值求解器相比,所提出的方法提供了基础分辨率过程的可见性,从而超出了最佳轨迹的计算以外的进一步分析。该框架的有效性已在真正的7度自由串行链上证明。还讨论和解决了与实际控制器上执行最佳轨迹相关的问题。实验表明,所提出的框架能够有效利用运动学冗余,以优化计划级别定义的性能索引,并生成可行的轨迹,这些轨迹可以在真实硬件上执行,并具有令人满意的结果。
translated by 谷歌翻译
可以使用几种技术来解决沿规定路径的最佳运动计划,但是大多数技术没有考虑到与环境接触时最终效用器所施加的扳手。当无法获得环境的动态模型时,就不存在合并方法来考虑相互作用的效果。无论要优化的特定性能指数如何,本文都提出了一种策略,将外部扳手包括在最佳计划算法中,考虑到任务规格。此过程是针对最小时间轨迹实例化的,并在接纳控制下执行交互任务的真实机器人进行了验证。结果证明,最终效应器扳手的包含会影响计划的轨迹,实际上改变了操纵器的动态能力。
translated by 谷歌翻译
我们提出了一种离散化设计,阐述了最近在Gagliardi和Russo(2021)中引入的算法,以合成来自约束,可能随机和非线性系统的示例的控制策略。在可能嘈杂的示例数据中不需要满足约束,这又可以从不同于控制的系统中收集。对于这种离散设计,我们讨论了许多属性并提供设计管道。我们术语作为离散的完全概率设计的设计在数值上基准测试,该示例涉及从从没有满足系统特定的致动约束的物理上不同的摆动的数据开始的致动约束的致动约束的致动约束。
translated by 谷歌翻译
An Anomaly Detection (AD) System for Self-diagnosis has been developed for Multiphase Flow Meter (MPFM). The system relies on machine learning algorithms for time series forecasting, historical data have been used to train a model and to predict the behavior of a sensor and, thus, to detect anomalies.
translated by 谷歌翻译
In many high-dimensional prediction or classification tasks, complementary data on the features are available, e.g. prior biological knowledge on (epi)genetic markers. Here we consider tasks with numerical prior information that provide an insight into the importance (weight) and the direction (sign) of the feature effects, e.g. regression coefficients from previous studies. We propose an approach for integrating multiple sources of such prior information into penalised regression. If suitable co-data are available, this improves the predictive performance, as shown by simulation and application. The proposed method is implemented in the R package `transreg' (https://github.com/lcsb-bds/transreg).
translated by 谷歌翻译
To simulate bosons on a qubit- or qudit-based quantum computer, one has to regularize the theory by truncating infinite-dimensional local Hilbert spaces to finite dimensions. In the search for practical quantum applications, it is important to know how big the truncation errors can be. In general, it is not easy to estimate errors unless we have a good quantum computer. In this paper we show that traditional sampling methods on classical devices, specifically Markov Chain Monte Carlo, can address this issue with a reasonable amount of computational resources available today. As a demonstration, we apply this idea to the scalar field theory on a two-dimensional lattice, with a size that goes beyond what is achievable using exact diagonalization methods. This method can be used to estimate the resources needed for realistic quantum simulations of bosonic theories, and also, to check the validity of the results of the corresponding quantum simulations.
translated by 谷歌翻译
Despite significant advances, the performance of state-of-the-art continual learning approaches hinges on the unrealistic scenario of fully labeled data. In this paper, we tackle this challenge and propose an approach for continual semi-supervised learning -- a setting where not all the data samples are labeled. An underlying issue in this scenario is the model forgetting representations of unlabeled data and overfitting the labeled ones. We leverage the power of nearest-neighbor classifiers to non-linearly partition the feature space and learn a strong representation for the current task, as well as distill relevant information from previous tasks. We perform a thorough experimental evaluation and show that our method outperforms all the existing approaches by large margins, setting a strong state of the art on the continual semi-supervised learning paradigm. For example, on CIFAR100 we surpass several others even when using at least 30 times less supervision (0.8% vs. 25% of annotations).
translated by 谷歌翻译
Learning how to navigate among humans in an occluded and spatially constrained indoor environment, is a key ability required to embodied agent to be integrated into our society. In this paper, we propose an end-to-end architecture that exploits Socially-Aware Tasks (referred as to Risk and Social Compass) to inject into a reinforcement learning navigation policy the ability to infer common-sense social behaviors. To this end, our tasks exploit the notion of immediate and future dangers of collision. Furthermore, we propose an evaluation protocol specifically designed for the Social Navigation Task in simulated environments. This is done to capture fine-grained features and characteristics of the policy by analyzing the minimal unit of human-robot spatial interaction, called Encounter. We validate our approach on Gibson4+ and Habitat-Matterport3D datasets.
translated by 谷歌翻译
Camera images are ubiquitous in machine learning research. They also play a central role in the delivery of important services spanning medicine and environmental surveying. However, the application of machine learning models in these domains has been limited because of robustness concerns. A primary failure mode are performance drops due to differences between the training and deployment data. While there are methods to prospectively validate the robustness of machine learning models to such dataset drifts, existing approaches do not account for explicit models of the primary object of interest: the data. This makes it difficult to create physically faithful drift test cases or to provide specifications of data models that should be avoided when deploying a machine learning model. In this study, we demonstrate how these shortcomings can be overcome by pairing machine learning robustness validation with physical optics. We examine the role raw sensor data and differentiable data models can play in controlling performance risks related to image dataset drift. The findings are distilled into three applications. First, drift synthesis enables the controlled generation of physically faithful drift test cases. The experiments presented here show that the average decrease in model performance is ten to four times less severe than under post-hoc augmentation testing. Second, the gradient connection between task and data models allows for drift forensics that can be used to specify performance-sensitive data models which should be avoided during deployment of a machine learning model. Third, drift adjustment opens up the possibility for processing adjustments in the face of drift. This can lead to speed up and stabilization of classifier training at a margin of up to 20% in validation accuracy. A guide to access the open code and datasets is available at https://github.com/aiaudit-org/raw2logit.
translated by 谷歌翻译
In this paper, we present PARTIME, a software library written in Python and based on PyTorch, designed specifically to speed up neural networks whenever data is continuously streamed over time, for both learning and inference. Existing libraries are designed to exploit data-level parallelism, assuming that samples are batched, a condition that is not naturally met in applications that are based on streamed data. Differently, PARTIME starts processing each data sample at the time in which it becomes available from the stream. PARTIME wraps the code that implements a feed-forward multi-layer network and it distributes the layer-wise processing among multiple devices, such as Graphics Processing Units (GPUs). Thanks to its pipeline-based computational scheme, PARTIME allows the devices to perform computations in parallel. At inference time this results in scaling capabilities that are theoretically linear with respect to the number of devices. During the learning stage, PARTIME can leverage the non-i.i.d. nature of the streamed data with samples that are smoothly evolving over time for efficient gradient computations. Experiments are performed in order to empirically compare PARTIME with classic non-parallel neural computations in online learning, distributing operations on up to 8 NVIDIA GPUs, showing significant speedups that are almost linear in the number of devices, mitigating the impact of the data transfer overhead.
translated by 谷歌翻译